skip to main content


Search for: All records

Creators/Authors contains: "Nasr, George D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We show that the base polytopePMof any paving matroidMcan be systematically obtained from a hypersimplex by slicing off certain subpolytopes, namely base polytopes of lattice path matroids corresponding to panhandle-shaped Ferrers diagrams. We calculate the Ehrhart polynomials of these matroids and consequently write down the Ehrhart polynomial ofPM, starting with Katzman’s formula for the Ehrhart polynomial of a hypersimplex. The method builds on and generalizes Ferroni’s work on sparse paving matroids. Combinatorially, our construction corresponds to constructing a uniform matroid from a paving matroid by iterating the operation ofstressed-hyperplane relaxationintroduced by Ferroni, Nasr and Vecchi, which generalizes the standard matroid-theoretic notion of circuit-hyperplane relaxation. We present evidence that panhandle matroids are Ehrhart positive and describe a conjectured combinatorial formula involving chain forests and Eulerian numbers from which Ehrhart positivity of panhandle matroids will follow. As an application of the main result, we calculate the Ehrhart polynomials of matroids associated with Steiner systems and finite projective planes, and show that they depend only on their design-theoretic parameters: for example, while projective planes of the same order need not have isomorphic matroids, their base polytopes must be Ehrhart equivalent.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. We present a combinatorial formula using skew Young tableaux for the coefficients of Kazhdan-Lusztig polynomials for sparse paving matroids. These matroids are known to be logarithmically almost all matroids, but are conjectured to be almost all matroids. We also show the positivity of these coefficients using our formula. In special cases, such as uniform matroids, our formula has a nice combinatorial interpretation. 
    more » « less
  3. null (Ed.)